
Visualizing Object-Centric Petri Nets

Tobias Brachmann1, István Koren2,3[0000−0003−1350−6732], Lukas
Liss2[0000−0002−4719−7993], and Wil M. P. van der Aalst2[0000−0002−0955−6940]

1 RWTH Aachen University, Aachen, Germany tobias.brachmann@rwth-aachen.de
2 Chair of Process and Data Science, RWTH Aachen University, Aachen, Germany

3 Department of Data Science and Engineering, ELTE University, Budapest, Hungary

Abstract. Object-centric process mining (OCPM) is gaining traction in
both academia and industry due to its ability to model real-world pro-
cesses more accurately than traditional case-centric approaches. By con-
sidering multiple interacting objects, object-centric Petri nets (OCPNs)
offer a richer process representation, but this also introduces unique chal-
lenges for visualization. The presence of multiple object types, variable
arcs, and complex interactions complicates the creation of clear and inter-
pretable layouts. In this paper, we address these challenges by presenting
a dedicated layout algorithm tailored to the structural characteristics of
OCPNs. Inspired by the Sugiyama framework, the algorithm balances
aesthetic and functional criteria, guided by a set of domain-specific qual-
ity metrics. We implemented our approach in an open-source web-based
tool, OCPN Visualizer, and a reusable JavaScript library for integration
into third-party applications. A user study confirms the practical rele-
vance of our approach and highlights its effectiveness in improving the
interpretability of object-centric process visualizations.

Keywords: Object-Centric Petri Net · Process Visualization · Layout
Algorithm · Sugiyama.

1 Introduction

The rise of object-centric process mining (OCPM) reflects a shift in how organi-
zations analyze and understand processes. Traditional process mining approaches
typically rely on a case-centric perspective, modeling a process in terms of a sin-
gle entity, such as an order. Real-world processes involve interactions among
entities (e.g., orders, customers, products) that case-centric models cannot ad-
equately capture. This disconnect has motivated the development of OCPM,
which provides a more realistic and comprehensive representation of complex
business processes [33].

Object-centric Petri nets, an extension of classical Petri nets with typed
places representing different object types, have emerged as a key modeling for-
malism for OCPM. OCPNs support richer modeling but pose new visualization
challenges. The structural complexity arising from multiple object types, vari-
able arcs, and inter-object dependencies makes it difficult to generate intuitive

2 T. Brachmann et al.

t2

t1

t3

(a) (b)

t2

t1

t3

Fig. 1: Two visualizations of the same OCPN, where (a) represents a poorly
organized layout and (b) illustrates an improved, more structured layout

layouts. Traditional visualization approaches for Petri nets are often insufficient,
as they do not account for the semantics introduced by object-centricity.

Larger OCPNs, especially those mined from real data, make clear visualiza-
tion increasingly difficult. Poorly structured layouts can lead to visual clutter
and obscure the underlying relationships between entities, complicating inter-
pretation. Figure 1 illustrates the impact of layout quality: while the left-hand
side displays a disorganized structure with overlapping edges and weak object
separation (objects distinguished by colors), the right-hand side demonstrates
how a layout tailored to object-centric properties improves readability and in-
terpretability by grouping related elements and emphasizing structural flow.

Despite the growing interest in OCPM, existing tools offer limited support for
visualizing OCPNs. We address this gap by proposing a layout algorithm tailored
to OCPNs, extending the Sugiyama framework [29] to incorporate object-type
grouping, flow direction, and edge clarity. Our contributions are threefold: (1)
quality metrics that combine graph aesthetics with object-centric criteria, (2) the
layout algorithm itself, and (3) an open-source implementation available both
as a web-based visualizer and a JavaScript library. We evaluate our approach
through runtime analysis and a user study.

The remainder of this paper is structured as follows. Section 2 reviews related
work in process mining and graph drawing. Section 3 introduces key concepts
and definitions. Section 5 presents our layout algorithm and quality metrics.
Section 6 describes the implementation. Section 7 reports the evaluation results,
including a comparison with existing tools and a user study. Finally, Section 8
concludes the paper and outlines directions for future work.

2 Related Work

This section reviews prior work on process mining techniques and graph drawing
methods relevant to the visualization of object-centric process models.

2.1 Object-Centric Process Mining

Traditional process mining focuses on analyzing event logs under a single case
notion [32]. However, many real-life processes involve interactions between mul-

Visualizing Object-Centric Petri Nets 3

tiple entities, which led to the development of object-centric process mining. This
paradigm shift addresses the limitations of single-case models by enabling the dis-
covery of OCPNs from event logs with multiple interconnected case notions [34].
The method was implemented in the pm4py library [8], which continues to evolve
as a key tool in the field.

Research has addressed layout challenges specifically in the context of busi-
ness process visualization. Bernstein and Soffer [7] investigated which layout
features users perceive as meaningful, providing empirical foundations for layout
design. Another work proposes a stable layout algorithm based on the Sugiyama
framework, tailored to process graphs and aimed at preserving the user’s mental
map during interactive filtering [23]. Gschwind et al. [21] introduced a linear-
time layout algorithm for business process models that emphasizes readability
through structural simplification. Sonke et al. [27] focused on optimal algorithms
for compact linear layouts, which are particularly relevant for minimizing space
while retaining clarity in flow-based visualizations.

Despite these advances, tools for visualizing OCPNs remain limited. Celonis
is a commercial tool supporting object-centric visualizations. OCπ [1] offers
sequence-based visualizations and filtering capabilities for OCPNs, relying on
the Graphviz library [18]. Meanwhile, pm4py supports object-centric discovery
and visualization within a Python environment. General-purpose graph layout
libraries (e.g., Graphviz) do not consider domain semantics like object grouping,
making their output hard to interpret in OCPN contexts. This motivates the
need for specialized visualization approaches.

2.2 Graph Drawing

Graph drawing aims to represent relational data visually using algorithms that
produce readable, structured layouts [13,5]. One prominent approach is the al-
ready mentioned Sugiyama method [29], a framework for drawing directed graphs
by organizing vertices into hierarchical layers. The method is composed of mul-
tiple steps (i.a., cycle breaking, layering, vertex ordering), and has inspired ex-
tensive research into optimizing each step (e.g., [30,16].

Force-directed algorithms such as Fruchterman-Reingold [19] use the phys-
ical analogies of vertices repelling each other and edges acting as springs to
achieve visually balanced layouts. These methods are intuitive and flexible but
computationally intensive for larger graphs. Magnetic-field-based techniques [28]
introduce directional forces to emphasize hierarchies or flows, especially useful
in layered or directed graphs. Hybrid approaches aim to combine the strengths
of these techniques [12].

Aesthetic principles play a vital role in enhancing graph readability. Stud-
ies emphasize minimizing edge crossings, maintaining consistent edge lengths,
and maximizing symmetry [25]. These criteria improve user comprehension and
reduce cognitive load when interpreting complex graphs [6].

4 T. Brachmann et al.

3 Preliminaries

In this section, we provide an overview of key concepts in process mining and
graph drawing.

3.1 Process Mining

OCPM extends classical process mining by modeling interactions between mul-
tiple object types, such as orders, products, and customers. While traditional
Petri nets rely on a single-case notion, OCPNs support multiple interacting life-
cycles. For example, the transition “ship product” may involve both an order and
a product. This complexity complicates visualization and motivates our graph-
based layout approach. We assume universes of activity names (Uact) and object
types (Uot) as given.

Definition 1 (Labeled Petri Net [34]). A labeled Petri net is a tuple N =
(P, T, F, l) where:

– P : Set of places
– T : Set of transitions, with P ∩ T = ∅
– F ⊆ (P × T) ∪ (T × P): Flow relation between places and transitions
– l ∈ T ↛ Uact: Labeling function that maps transitions to activity names

While the underlying graph structure of Petri nets is bipartite, we formally
define relevant graph-theoretic concepts in Section 3.2.

Definition 2 (Object-Centric Petri Net [34]). An object-centric Petri net
is a tuple ON = (N, pt, Fvar), where:

– N = (P, T, F, l): Labeled Petri net
– pt ∈ P → Uot: Mapping function that assigns object types to places
– Fvar ⊆ F : Subset of variable arcs

In an OCPN, places represent typed objects and transitions represent ac-
tivities involving them. Arcs define token flow (i.e., object references) between
places and transitions. Variable arcs, rendered as double lines, indicate that the
number of involved objects is not fixed (e.g., “assemble order” may consume
multiple products).

3.2 Graphs

To support our layout algorithm, we now formalize the underlying graph struc-
tures derived from OCPNs.

Definition 3 (Directed Graph [3]). A directed graph G = (V,E) consists of
a set of vertices V and a set of ordered pairs E ⊆ V × V called edges.

Visualizing Object-Centric Petri Nets 5

For an edge (u, v), often denoted u → v, u is the head, v the tail. Vertices
u, v are adjacent if (u, v) ∈ E, and each is a neighbor of the other. A vertex is
incident to an edge if it is either head or tail. A sequence ⟨u1, . . . , uk⟩ is a path if
(ui, ui+1) ∈ E for all i < k; it is a cycle if also (uk, u1) ∈ E. A digraph is acyclic
if it contains no cycles.

Definition 4 (DAG [31]). A DAG is a directed acyclic graph.

The outdegree and indegree of a vertex u are denoted d+G(u) and d−G(u), re-
spectively. A vertex with zero outdegree is a sink ; with zero indegree, a source [14].
A graph G = (V,E) is bipartite if V can be partitioned into V1 ∪ V2 such that
no two vertices within the same set are adjacent [2]. OCPNs can be modeled as
bipartite graphs with places P and transitions T as vertex sets, and flow relation
F as edges.

A key step in layered layout is converting cyclic graphs into DAGs. Since
OCPNs derived from real-world data may contain cycles, these must be removed
as a preprocessing step for layout computation.

Definition 5 (Feedback Arc Set (FAS) [11]). A feedback arc set in a digraph
G = (V,E) is a subset F ⊆ E such that (V,E \ F) is acyclic.

Finding a minimal FAS is NP-hard [9,26] and underpins the preprocessing
for layer assignment.

Layer Assignment Given a DAG G = (V,E), a layering is a partition L =
{L0, . . . , Lh} of V , where (u, v) ∈ E implies u ∈ Lj , v ∈ Li, i < j. We define:

Definition 6 (Layer Assignment Problem [17,22]). Given a DAG, find a
layering L such that all edges point from lower to higher layers.

The rank of a vertex u is the index i such that u ∈ Li, denoted rank(u,L).
The span of edge (u, v) is rank(u)− rank(v) ≥ 1. If span = 1, the edge is tight ;
otherwise, long. We convert long edges to tight ones by inserting dummy vertices
at intermediate layers.

The height of a layering is h+1, its width is the maximum layer size, and its
area is the product of both [22,14,31].

Barycenter Heuristic Vertex ordering within layers plays a crucial role in
reducing edge crossings and preserving structural clarity. A common technique
for this is the barycenter heuristic, which reorders vertices based on the average
positions of their neighbors in adjacent layers.

Definition 7 (Barycenter [14,29]). For a vertex u in a layer, let N(u) denote
the adjacent vertices of u in the layer above (or below). The barycenter b(u) is
defined as:

b(u) =
1

| N(u) |
∑

v∈N(u)

pos(v)

where pos(v) is the position of the vertex v in the adjacent layer.

6 T. Brachmann et al.

u

v

|x(u) - x(v)|

QM1 QM2 QM3 QM4 QM5 QM6
Fig. 2: The six quality metrics used in the layout algorithm

Having established the key graph-theoretic foundations, the next section de-
fines the quality metrics that guide and evaluate our layout algorithm. These
metrics combine classical aesthetic criteria from graph drawing with domain-
specific considerations relevant to object-centric process models.

4 Quality Metrics

Our layout algorithm is driven by the following six quality metrics, which can
be categorized into two groups. The first five metrics (QM1–QM5) are derived
from principles in the graph drawing literature [25] and aim to promote general
readability. The final metric (QM6) is specific to the object-centric nature of
OCPNs, capturing structural aspects that are unique to this modeling formalism.

QM1 Total edge length. Measures the sum of edge lengths across the layout.
While longer edges are not inherently problematic, reducing total length often
leads to more compact visualizations and helps avoid excessive whitespace.

QM2 Edge bends. Counts the number of bends along edges. Layouts with
fewer bends tend to produce simpler and more coherent visual connections.

QM3 Edge crossings. Counts the number of edge intersections. Minimizing
crossings is a well-known heuristic to support visual clarity and reduce ambiguity
in complex graphs.

QM4 Flow consistency. Identifies edges that run counter to the dominant
flow direction (e.g., from bottom to top in a top-down layout). While not all
reversed edges hinder interpretation, a consistent flow direction can support the
mental map of users and improve navigation through the process structure.

QM5 Aspect ratio balance. Assesses the ratio between the width and height
of the layout. Extremely wide or tall layouts can lead to inefficient use of space
and fragmented views when visualized in scrolling interfaces.

QM6 Object-type grouping. Measures the spatial variance of places with the
same object type across the layout. A lower variance indicates stronger grouping,
which can help users identify object-level structure and interpret inter-object
dependencies.

Figure 2 illustrates the six quality metrics using synthetic examples. These
metrics are used throughout the layouting pipeline and also inform the evaluation
described in Section 7.

Visualizing Object-Centric Petri Nets 7

1

t1

3

t3

4 5

t2

2

1

t1

3

t3

4

5

t2

2

1

t1

3

t3

4

5

t2

2

1

t1

3

t3

4

5

t2

2

1

t1

3

t3

4

5

t2

2

6

6 6 6 6

Cycle Breaking Layer Assignment Vertex Ordering Vertex Positioning Edge Routing

Fig. 3: Substeps of our algorithm based on the Sugiyama framework

5 Layout Algorithm

In this section, we present the design of our layout algorithm, based on the
Sugiyama framework [29]. The general pipeline of our algorithm consists of five
steps, shown in Figure 3. In the first step, Cycle Breaking, the possibly cyclic
graph is transformed into an acyclic graph by reversing the minimum number of
edges whose reversal makes the graph acyclic. This is necessary for the following
step, Layer Assignment, where each vertex of the graph is assigned a rank
so that for each edge of the graph, the tail has a lower rank than the head.
For edges where the head and tail vertices are not on adjacent layers, so-called
dummy vertices are inserted in every layer between the layers of the head and
tail. After each vertex has been assigned a rank, the Vertex Ordering step
minimizes the number of edge crossings and groups related vertices together by
determining a relative order within the layers. Now, every vertex has a relative
position determined by its rank and index in its layer. The next step, Vertex
Positioning, computes the actual X and Y coordinates for the vertices based on
their rank and index in their layer. In the last step, Edge Routing, the edges
between adjacent vertices are drawn with their original direction. For edges where
dummy vertices had been introduced in the Layer Assignment step, the positions
of the dummy vertices are used as path points to draw the edge.

Input. The inputs of our layout algorithm are the OCPN ON = (N, pt, Fvar)
where N = (P, T, F, l), and the user settings Config , including various parame-
ters and preferences that influence the layout, such as flow direction, included
object types, distances, and vertex sizes.

Cycle Breaking. To build a layered visualization using the Sugiyama frame-
work, the input graph must be acyclic. However, the input graph, G = (V,E),
derived from the OCPN may contain cycles. To address this issue, our algorithm
includes a cycle-breaking step, which reverses a set of edges to make the graph
acyclic. Following QM4 (flow direction), we aim to find the smallest possible set
that satisfies the condition of making the graph acyclic upon reversal. In our
implementation, we adapt and modify an algorithm, known as Greedy Cycle
Removal, proposed by Eades et al. [15]. This algorithm provides a good, though
not necessarily optimal, solution to the minimum FAS problem and runs in lin-
ear time. The greedy FAS algorithm computes a linear ordering of vertices and

8 T. Brachmann et al.

Fig. 4: The modified Greedy Cycle Removal algorithm. For this example, the user
has selected firsts = [1, 3] and lasts = [5]. The edge e = (t3, 4) will be reversed
because inds(t3) = 6 > 3 = inds(4). Note that reversing the edge e = (t3, 4)
results in a DAG.

solves the FAS problem by taking the set of edges with direction against the
ordering as a solution.

We modified the algorithm by incorporating two sets of vertices: firsts and
lasts. The vertices in firsts are placed at the beginning of the ordering and the
vertices in lasts are placed at the end. This modification enables users to control
the assignment of vertices to the horizontal layers, assigned during the Layer
Assignment.

Layer Assignment. The objective for the layer assignment step is to obtain a
proper layered DAG G

′
by solving the layer assignment problem for the DAG G∗.

That means we assign each vertex of the DAG to a specific layer, ensuring that
every edge flows from a higher layer (head) to a lower layer (tail) while inserting
dummy vertices for edges spanning multiple layers. This process provides a clear
directional flow for all edges, addressing QM4. Furthermore, a compact layering
is crucial, as it directly impacts the quality of the layout. Fewer layers result
in fewer dummy vertices, which can shorten edge lengths (QM1), reduce edge
bends (QM2), and positively influence the number of edge crossings (QM3).
Additionally, a good layer assignment improves the proportion between the width
and height of the visualization (QM5).

To achieve an optimal layering, L = {L0, L1, . . . , Lh}, of G∗, we employ
an ILP approach, first introduced by Gansner and Emden [20]. This method
minimizes h, the number of layers required, and thus the amount of dummy
vertices, while respecting the graph’s structural constraints. The ILP formulation
is as follows:

minimize
∑
e∈E∗

span(e,L) (Objective Function)

Subject to:

rank(u,L)− rank(v,L) ≥ 1,∀(u, v) ∈ E∗ (Edge Constraint)
rank(u,L) ≥ 0,∀u ∈ V (Positive Constraint)
rank(u,L) ∈ N,∀u ∈ V (Integer Constraint)

Visualizing Object-Centric Petri Nets 9

To solve the above ILP formulation, we utilize a library that implements a
simplex method [24] that returns a layering L of G∗. That is, for every vertex u
we obtain a rank(u,L) so that the objective function is minimized.

Since a proper layering is essential for the Vertex Ordering step, we insert
dummy vertices for edges that are not tight. This turns the potentially not
proper layering L into a proper one. Formally, let e = (u, v) be an edge with
rank(u,L) = j and rank(v,L) = i and span(e,L) = j − i > 1. Then we
add dummy vertices di+1

e , di+2
e , . . . , dj−1

e to the layers Li+1, Li+2, . . . , Lj−1 and
replace edge e by the path (u, dj−1

e , . . . , di+1
e , v) [22].

Vertex Ordering. The Vertex Ordering step aims to minimize edge crossings
and promote the clustering of places with the same object type, addressing
layout quality metrics such as edge crossings (QM3), total edge length (QM1),
edge bends (QM2), and object type grouping (QM6). The output is a reordered
layering L of the graph G

′
with the lowest observed layout score.

Layer-by-Layer Sweep Our algorithm applies a layer-by-layer sweep based on
a modified barycenter heuristic, alternating between two directions: a downward
sweep, where layers Lh−1 to L0 are reordered based on the positions of vertices in
the layer below (Li+1); and an upward sweep, where layers L1 to Lh are reordered
based on the positions of vertices in the layer above (Li−1).

An optional presorting step may precede the sweeps, where object types are
ordered according to a user-defined mapping and places are sorted accordingly
to promote initial clustering.

Barycenter Computation for Places Each place vertex p ∈ Li receives a
barycenter value bp(p) combining neighbor-alignment and object type grouping.
The value is computed as:

bp(p) = (1− α) · b(p) + α · bobject(p),

where α ∈ [0, 1] is a user-defined weight, b(p) is the average position of p’s
neighbors in Li±1 (depending on sweep direction), and

bobject(p) =
1

| Nobject(p) |
∑

u∈Nobject(p)

pos(u),

with Nobject(p) being the set of places with the same object type as p in a
user-defined range of layers above or below the current layer.

Barycenter Computation for Other Vertex Types For transitions, the
barycenter b(t) is computed using only adjacent vertices in the neighboring layer;
clustering is not applied. For dummy vertices, which connect to exactly one neigh-
bor in the adjacent layer, the barycenter equals the position of that neighbor.

10 T. Brachmann et al.

Reordering Based on Barycenters Once barycenter values are computed
for all vertices in layer Li, the layer is reordered from left to right by sorting
vertices in ascending order of these values. In case of ties, the previous order is
preserved to maintain stability.

Termination Conditions The sweep process alternates downward and upward
passes across the layered graph. After each complete sweep (i.e., one downward
and one upward pass), the current vertex layering L is evaluated using the layout
score:

score(L, G′) = |Edge Crossings|+ α · Object Attraction Quality,

where the first term counts edge crossings and the second quantifies how well
places of the same type are grouped. The process continues until either (i) no
score improvement is observed after k consecutive sweeps (with k from the con-
figuration), or (ii) the vertex ordering matches a previous sweep. The final output
is the layering L with the lowest score, minimizing edge crossings and promoting
object-type clustering.

Vertex Positioning. Given the reordered layering L from the vertex ordering
step, the graph G′, and user configurations Config, the goal is to assign X and
Y coordinates to all vertices, while respecting the layer structure.

Our algorithm supports both top-down (vertical) and left-right (horizontal)
layouts, aligning with the flow semantics in QM4. We describe the top-down case:
X coordinates are computed based on the within-layer order, while Y coordinates
are uniform across each layer. Since Y positioning is straightforward, we focus
on the more complex task of X coordinate computation. In the horizontal layout,
this logic is mirrored.

To compute horizontal positions while preserving edge straightness and ver-
tex order, we adapt the heuristic by Brandes and Köpf [10], which addresses
layout quality via QM1 and QM2. The algorithm consists of three phases: Ver-
tical Alignment, Horizontal Compaction, and Balancing. The first two
are repeated across four alignment variants (upper/lower, leftmost/rightmost
medians), and the final layout is obtained by averaging the results to ensure a
well-balanced visual structure.

Edge Routing. With the X and Y coordinates for all vertices in the graph
G

′
determined, the next step is to finalize the layout by routing the edges.

Edge routing ensures that edges are drawn clearly and do not overlap with
other elements of the graph, such as places or transitions, while preserving the
structure and flow of the graph. Any edges that were reversed during the cycle-
breaking step are restored to their original direction during this phase.

We begin by adjusting the positions of the outer dummy vertices, ensuring
that they are aligned at the top or bottom of their respective layers. For an
edge e, which had been replaced by the path (u, dj−1

e , . . . , di+1
e , v), the outer

dummies are dj−1
e and di+1

e . After adjusting the positions of the outer dummies
the edges are routed to the center of the respective vertices. Finally, the outer

Visualizing Object-Centric Petri Nets 11

Fig. 5: GUI of the OCPN Visualizer with layout configuration options on the left
(not intended to be readable here)

dummy vertices are used as path points to guide the edges. The inner dummy
vertices, if any, are ignored for routing, as the horizontal alignment guarantees
that long edges will follow a straight path along the X-axis. This simple approach
results in a clear, well-organized layout where edges are routed to the appropriate
connection points of vertices and avoid overlap.

6 Implementation

The OCPN Visualizer is a web-based tool that integrates our layout algorithm4.
It is developed using a state-of-the-art technology stack, consisting of a React and
Next.js frontend and a TypeScript backend. Our implementation utilizes several
libraries: GLPK.js is employed to solve the layer assignment problem, and D3.js
supports the creation of interactive and visually expressive SVG-based graphics.
The core layouting logic is available as the reusable npm package ocpn-viz.

Figure 5 shows the GUI of the OCPN Visualizer with the configuration op-
tions on the left. To support flexible exploration, our tool includes a configu-
ration panel that allows users to adjust visual parameters, such as node width,
arc curvature, and label padding, and see the layout update in real time. This
helps users adapt the visualization to specific model characteristics or prefer-
ences (e.g., focusing on arc routing or text readability). Additionally, hovering
and clicking on transitions or places reveals further details, aiding the inter-
pretation of densely connected models. While we do not yet support filtering
or collapsing parts of the net, these interactive adjustments already improve
navigability and comprehension, especially for large models.

4 Source code and app: https://github.com/rwth-pads/ocpn-visualizer

https://github.com/rwth-pads/ocpn-visualizer

12 T. Brachmann et al.

7 Evaluation

To evaluate the performance of our approach, we used a set of OCPNs of varying
sizes and structural complexities. These included both small, synthetic models
and larger, more complex instances designed to reflect real-world characteristics.
All benchmarks were run on a modern consumer-grade laptop using Chrome. For
each OCPN, the metrics recorded included the number of places (|P |), transitions
(|T |), edges (|F |), variable arcs (|Fvar|), dummies introduced during layer assign-
ment (|D|), and object types (|OT |). Layout time refers to the time required to
compute the coordinates for all vertices in the OCPN, while visualization time
is the time taken to draw the output SVG. Table 1 summarizes the performance
results across OCPNs of varying complexities.

Using the profiler within Chrome DevTools, we measured the memory usage
of the OCPN Visualizer across OCPNs of varying complexity. The memory
usage grew proportionally with the size of the OCPNs, starting at 746 kB for
a small OCPN with two vertices and reaching 1.5 MB for a larger OCPN with
310 vertices. This trend indicates good scalability, as the memory usage remains
manageable even for more complex OCPNs.

7.1 PM4Py vs OCPN Visualizer

We compared visualizations generated by the OCPN Visualizer and pm4py [8]
using three OCPNs of varying sizes to highlight their respective strengths.

For small and medium models, the OCPN Visualizer offers faster run times,
interactive features, and clearer layouts, thanks to object-type grouping, vari-
able arc support, and styling options. In contrast, pm4py produces aesthetically
polished, compact layouts with curved edges and clear source/sink labeling,
but lacks interactivity and customization. For larger models, pm4py outper-
forms in runtime and visual metrics such as edge length, bends, and crossings,
though its layouts vary across executions. The OCPN Visualizer, while slower
on large inputs, delivers consistent, interpretable results. Overall, pm4py suits
large-scale visualization, while the OCPN Visualizer excels in usability and clar-
ity for smaller models. Further improving its layout algorithm could extend its
competitiveness to larger OCPNs.

Table 1: Run times in ms for OCPNs of increasing sizes
| P | | T | | F | | Fvar | | D | | OT | Layout (ms) Visualization (ms)

1 1 2 0 0 1 25.81 18.24
17 9 28 9 0 3 28.61 163.41
25 9 40 20 2 5 37.14 173.81
23 17 46 10 4 3 28.27 318.13
17 22 50 4 34 3 44.18 449.44
37 23 74 6 48 7 66.7 440.39
48 44 116 10 86 7 85.87 828.29
38 62 140 4 210 2 149.2 1222.7

Visualizing Object-Centric Petri Nets 13

7.2 User Study

To evaluate the user experience of our tool OCPN Visualizer we conducted a user
study employing the System Usability Scale (SUS) [4]. The 20 participants that
had varying levels of expertise were given two tasks: First, they had to follow a
set of guided instructions to visualize a provided OCPN. Then, they were asked
to achieve a target visualization by utilizing the available user configurations.
After completing both tasks, participants submitted the SUS questionnaire, con-
sisting of ten standardized questions, and open feedback. The SUS score averaged
78.6, indicating good usability. While most users found the tool highly usable,
a few experienced moderate difficulties. Informal feedback indicated that the
live configuration options and responsive layout adjustments improved the com-
prehensibility and usability of the tool. To further assess the practical value of
our approach, we plan to conduct additional user studies using models discov-
ered from real event logs to evaluate effectiveness in realistic process analytics
scenarios, and to directly compare our visualizations with those produced by
commercial tools such as Celonis.

8 Conclusion

This paper addressed the challenge of visualizing OCPNs, a task complicated
by the lack of specialized tools and evaluation methods. To bridge this gap, we
developed the OCPN Visualizer, a web-based tool featuring a dedicated layout
algorithm and user configuration options, along with ocpn-viz, a reusable NPM
package. Our work was guided by three objectives focusing on layout strategies,
user interaction features, and quality metrics for visualization evaluation.

We defined six quality metrics tailored to OCPNs, combining established
graph aesthetics with domain-specific needs such as object-type clustering. These
informed the development of our layout algorithm. A two-part evaluation com-
paring our tool with pm4py and conducting a user study demonstrated strong
performance in usability, interpretability, and scalability. The algorithm pro-
duced clear layouts for small and medium models, while offering improvements
in clarity and interactivity over existing tools.

The findings validate our approach while highlighting areas for future im-
provement, including layout refinements, more advanced edge routing, and em-
pirical validation of the proposed metrics. The defined quality metrics may also
serve as a foundation for replicable comparisons of alternative layout algorithms
in future work. Overall, this research provides a solid foundation for advancing
OCPN visualization in both academic and practical contexts.

References

1. Adams, J.N., van der Aalst, W.M.P.: OCπ: Object-centric process insights. In:
Bernardinello, L., Petrucci, L. (eds.) Application and Theory of Petri Nets and
Concurrency, PETRI NETS 2022, Bergen, Norway, June 19-24, 2022. LNCS, vol.
13288, pp. 139–150. Springer (2022)

14 T. Brachmann et al.

2. Asratian, A.S., Denley, T.M.J., Häggkvist, R.: Bipartite Graphs and Their Appli-
cations. Cambridge University Press, 1 edn. (1998). https://doi.org/10.1017/
CBO9780511984068

3. Bang-Jensen, J., Gutin, G.Z.: Digraphs - Theory, Algorithms and Applications,
Second Edition. Springer Monographs in Mathematics, Springer (2009)

4. Bangor, A., Kortum, P.T., Miller, J.T.: An empirical evaluation of the system
usability scale. Int. J. Hum. Comput. Interact. 24(6), 574–594 (2008). https:
//doi.org/10.1080/10447310802205776

5. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Algorithms for draw-
ing graphs: An annotated bibliography. Computational Geometry 4(5), 235–282
(1994). https://doi.org/10.1016/0925-7721(94)00014-X

6. Bennett, C., Ryall, J., Spalteholz, L., Gooch, A.: The aesthetics of graph visu-
alization. In: Cunningham, D.W., et al. (eds.) 3rd International Symposium on
Computational Aesthetics in Graphics, Visualization, and Imaging, Banff, AB,
Canada, June 20-22, 2007. pp. 57–64. Eurographics Association (2007). https:
//doi.org/10.2312/COMPAESTH/COMPAESTH07/057-064

7. Bernstein, V., Soffer, P.: How Does It Look? Exploring Meaningful Layout Features
of Process Models. In: Persson, A., Stirna, J. (eds.) Advanced Information Systems
Engineering Workshops, vol. 215, pp. 81–86. Springer International Publishing,
Cham (2015). https://doi.org/10.1007/978-3-319-19243-7_7

8. Berti, A., van Zelst, S., Schuster, D.: PM4Py: A process mining library for Python.
Software Impacts 17, 100–556 (2023). https://doi.org/10.1016/j.simpa.2023.
100556

9. Brandenburg, F.J., Hanauer, K.: Sorting heuristics for the feedback arc set problem
(2011)

10. Brandes, U., Köpf, B.: Fast and simple horizontal coordinate assignment. In:
Mutzel, P., Jünger, M., Leipert, S. (eds.) Graph Drawing, 9th International Sym-
posium, GD 2001 Vienna, Austria, September 23-26, 2001, Revised Papers. LNCS,
vol. 2265, pp. 31–44. Springer (2001)

11. Charbit, P., Thomassé, S., Yeo, A.: The minimum feedback arc set problem is
NP-hard for tournaments. Comb. Probab. Comput. 16(1), 1–4 (2007). https:
//doi.org/10.1017/S0963548306007887

12. Chimani, M., Gutwenger, C., Jünger, M., Klau, G.W., Klein, K., Mutzel, P.: The
open graph drawing framework (OGDF). In: Tamassia, R. (ed.) Handbook on
Graph Drawing and Visualization, pp. 543–569. Chapman and Hall/CRC (2013)

13. Eades, P., Hong, S.H.: Symmetric graph drawing. In: Tamassia, R. (ed.) Handbook
on Graph Drawing and Visualization, pp. 87–113. Chapman and Hall/CRC (2013)

14. Eades, P., Lin, X.: How to draw a directed graph. In: IEEE Workshop on Visual
Languages, VL 1989, Rome, Italy, October 4-6, 1989. pp. 13–17. IEEE Computer
Society (1989). https://doi.org/10.1109/WVL.1989.77035

15. Eades, P., Lin, X., Smyth, W.F.: A fast and effective heuristic for the feedback
arc set problem. Inf. Process. Lett. 47(6), 319–323 (1993). https://doi.org/10.
1016/0020-0190(93)90079-O

16. Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs. Algo-
rithmica 11(4), 379–403 (1994). https://doi.org/10.1007/BF01187020

17. Eiglsperger, M., Siebenhaller, M., Kaufmann, M.: An efficient implementation of
sugiyama’s algorithm for layered graph drawing. J. Graph Algorithms Appl. 9(3),
305–325 (2005). https://doi.org/10.7155/JGAA.00111

18. Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz—open
source graph drawing tools. In: Graph Drawing 2001 Vienna, Austria, September
23–26, 2001 Revised Papers 9. pp. 483–484. Springer (2002)

https://doi.org/10.1017/CBO9780511984068
https://doi.org/10.1017/CBO9780511984068
https://doi.org/10.1017/CBO9780511984068
https://doi.org/10.1017/CBO9780511984068
https://doi.org/10.1080/10447310802205776
https://doi.org/10.1080/10447310802205776
https://doi.org/10.1080/10447310802205776
https://doi.org/10.1080/10447310802205776
https://doi.org/10.1016/0925-7721(94)00014-X
https://doi.org/10.1016/0925-7721(94)00014-X
https://doi.org/10.2312/COMPAESTH/COMPAESTH07/057-064
https://doi.org/10.2312/COMPAESTH/COMPAESTH07/057-064
https://doi.org/10.2312/COMPAESTH/COMPAESTH07/057-064
https://doi.org/10.2312/COMPAESTH/COMPAESTH07/057-064
https://doi.org/10.1007/978-3-319-19243-7_7
https://doi.org/10.1007/978-3-319-19243-7_7
https://doi.org/10.1016/j.simpa.2023.100556
https://doi.org/10.1016/j.simpa.2023.100556
https://doi.org/10.1016/j.simpa.2023.100556
https://doi.org/10.1016/j.simpa.2023.100556
https://doi.org/10.1017/S0963548306007887
https://doi.org/10.1017/S0963548306007887
https://doi.org/10.1017/S0963548306007887
https://doi.org/10.1017/S0963548306007887
https://doi.org/10.1109/WVL.1989.77035
https://doi.org/10.1109/WVL.1989.77035
https://doi.org/10.1016/0020-0190(93)90079-O
https://doi.org/10.1016/0020-0190(93)90079-O
https://doi.org/10.1016/0020-0190(93)90079-O
https://doi.org/10.1016/0020-0190(93)90079-O
https://doi.org/10.1007/BF01187020
https://doi.org/10.1007/BF01187020
https://doi.org/10.7155/JGAA.00111
https://doi.org/10.7155/JGAA.00111

Visualizing Object-Centric Petri Nets 15

19. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed place-
ment. Softw. Pract. Exp. 21(11), 1129–1164 (1991). https://doi.org/10.1002/
SPE.4380211102

20. Gansner, E.R., Koutsofios, E., North, S.C., Vo, K.P.: A technique for drawing
directed graphs. IEEE Trans. Software Eng. 19(3), 214–230 (1993). https://doi.
org/10.1109/32.221135

21. Gschwind, T., Pinggera, J., Zugal, S., Reijers, H.A., Weber, B.: A linear time layout
algorithm for business process models. Journal of Visual Languages & Computing
25(2), 117–132 (2014). https://doi.org/10.1016/j.jvlc.2013.11.002

22. Healy, P., Nikolov, N.S.: Hierarchical drawing algorithms. In: Tamassia, R. (ed.)
Handbook on Graph Drawing and Visualization, pp. 409–453. Chapman and
Hall/CRC (2013)

23. Mennens, R.J., Scheepens, R., Westenberg, M.A.: A stable graph layout algorithm
for processes. Computer Graphics Forum 38(3), 725–737 (2019). https://doi.
org/10.1111/cgf.13723

24. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J.
7(4), 308–313 (1965). https://doi.org/10.1093/COMJNL/7.4.308

25. Purchase, H.C.: Metrics for graph drawing aesthetics. J. Vis. Lang. Comput. 13(5),
501–516 (2002). https://doi.org/10.1006/JVLC.2002.0232

26. Simpson, M., Srinivasan, V., Thomo, A.: Efficient computation of feedback arc set
at web-scale. Proc. VLDB Endow. 10(3), 133–144 (2016). https://doi.org/10.
14778/3021924.3021930

27. Sonke, W., Verbeek, K., Meulemans, W., Verbeek, E., Speckmann, B.: Optimal
Algorithms for Compact Linear Layouts. In: 2018 IEEE Pacific Visualization Sym-
posium (PacificVis). pp. 1–10. IEEE, Kobe (2018). https://doi.org/10.1109/
PacificVis.2018.00010

28. Sugiyama, K., Misue, K.: Graph drawing by the magnetic spring model. J. Vis.
Lang. Comput. 6(3), 217–231 (1995). https://doi.org/10.1006/JVLC.1995.1013

29. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierar-
chical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109–125 (1981).
https://doi.org/10.1109/TSMC.1981.4308636

30. Tamassia, R.: On embedding a graph in the grid with the minimum number
of bends. SIAM J. Comput. 16(3), 421–444 (1987). https://doi.org/10.1137/
0216030

31. Tang, H., Hu, Z.: Network Simplex Algorithm for DAG Layering. In: 2013 Inter-
national Conference on Computational and Information Sciences. pp. 1525–1528.
IEEE, Shiyang, China (2013). https://doi.org/10.1109/ICCIS.2013.401

32. van der Aalst, W.M.P.: Process Mining - Data Science in Action, Second Edition.
Springer (2016)

33. van der Aalst, W.M.P.: Object-centric process mining: Dealing with divergence
and convergence in event data. In: Ölveczky, P.C., Salaün, G. (eds.) Software En-
gineering and Formal Methods - 17th International Conference, SEFM 2019, Oslo,
Norway, September 18-20, 2019, Proceedings. LNCS, vol. 11724, pp. 3–25. Springer
(2019). https://doi.org/10.1007/978-3-030-30446-1_1

34. van der Aalst, W.M.P., Berti, A.: Discovering object-centric petri nets. Fundam.
Informaticae 175(1-4), 1–40 (2020). https://doi.org/10.3233/FI-2020-1946

https://doi.org/10.1002/SPE.4380211102
https://doi.org/10.1002/SPE.4380211102
https://doi.org/10.1002/SPE.4380211102
https://doi.org/10.1002/SPE.4380211102
https://doi.org/10.1109/32.221135
https://doi.org/10.1109/32.221135
https://doi.org/10.1109/32.221135
https://doi.org/10.1109/32.221135
https://doi.org/10.1016/j.jvlc.2013.11.002
https://doi.org/10.1016/j.jvlc.2013.11.002
https://doi.org/10.1111/cgf.13723
https://doi.org/10.1111/cgf.13723
https://doi.org/10.1111/cgf.13723
https://doi.org/10.1111/cgf.13723
https://doi.org/10.1093/COMJNL/7.4.308
https://doi.org/10.1093/COMJNL/7.4.308
https://doi.org/10.1006/JVLC.2002.0232
https://doi.org/10.1006/JVLC.2002.0232
https://doi.org/10.14778/3021924.3021930
https://doi.org/10.14778/3021924.3021930
https://doi.org/10.14778/3021924.3021930
https://doi.org/10.14778/3021924.3021930
https://doi.org/10.1109/PacificVis.2018.00010
https://doi.org/10.1109/PacificVis.2018.00010
https://doi.org/10.1109/PacificVis.2018.00010
https://doi.org/10.1109/PacificVis.2018.00010
https://doi.org/10.1006/JVLC.1995.1013
https://doi.org/10.1006/JVLC.1995.1013
https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.1137/0216030
https://doi.org/10.1137/0216030
https://doi.org/10.1137/0216030
https://doi.org/10.1137/0216030
https://doi.org/10.1109/ICCIS.2013.401
https://doi.org/10.1109/ICCIS.2013.401
https://doi.org/10.1007/978-3-030-30446-1_1
https://doi.org/10.1007/978-3-030-30446-1_1
https://doi.org/10.3233/FI-2020-1946
https://doi.org/10.3233/FI-2020-1946

	Visualizing Object-Centric Petri Nets

