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Abstract. Visual Process Analytics (VPA) is emerging as a discipline
where Process Mining (PM) and Visual Analytics (VA) experts collabo-
rate to simplify the analysis and enhance the understanding of complex
processes. In this work, we focus on Directly-Follow Graphs (DFGs), a
common visualization technique used in PM, and identify how some of
its limitations can be overcome by complementing DFGs with a timeline-
based visualization strategy used in VA systems analyzing event se-
quences obtained from event logs. To illustrate this, we have chosen the
Road Traffic Management Process dataset, a well-known dataset to the
PM community. We have identified four cases where DFGs struggle to
easily convey the exact nature of the underlying processes and show how
timeline-based visualization strategies help disambiguate findings.

Keywords: Visual process analytics · Directly-Follows Graph · Event
sequence visualization.

1 Introduction

Data visualization plays a crucial role in analyzing datasets and uncovering
meaningful insights. In process mining (PM), visualization techniques are essen-
tial to understand the execution of processes [4,8]. The Directly-Follows Graph
(DFG) is a common visualization used in PM to represent control-flow behavior
based on event logs. DFGs are simple to compute and generally easy to under-
stand, though they can sometimes be misinterpreted [1].

Despite their advantages, DFGs also have limitations [1]. First, they become
too complex with a high number of variants. The more variants, the larger the
number of edges in the DFG, leading to Spaghetti-like DFGs difficult to in-
terpret (L1). To simplify them, frequency-based thresholds are typically used,
often leading to misinterpretations [1]. Second, concurrent activities may appear
in varying orders across traces in the event log, leading to DFGs with loops,
even when each activity occurs only once per case [1] (L2). Unlike more expres-
sive modeling notations like Petri nets, DFGs often misrepresent concurrency
as cyclic behavior. Third, DFGs usually have a low precision, i.e., they allow
behaviors that are not observed in the event log (L3). Figure 1(a) shows the
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Fig. 1. (a) Event log with six traces represented as (b) sequential patterns, (c) sequen-
tial patterns with aligned activities, and (d) the corresponding DFG.

traces in an event log and its corresponding DFG in (c). This DFG allows traces
like a → b → c → f → g (path in red), even though this behavior is not present
in the event log. To address this problem, analysts use a range of manual and
time-consuming strategies, such as exploring the process variants one by one,
or filtering the event log to determine if a certain behavior is present or not.
This task is, in some cases, unmanageable for large numbers of variants. Finally,
DFGs represent repetitions of activities as loops. In Figure 1(d), the repetition
of activity c in a → b → c → c → c → g is shown as a self-transition in node c
(arrow in black). However, it is not possible to obtain the number of repetitions
in the DFG, i.e., whether c repeats three times or, for instance, eight times (L4).
This also happens with loops involving several activities.

In recent years, visual process analytics has emerged to emphasize the role
of interactive visualizations and the multifaceted nature of the data involved in
process analysis [12,14]. Visual process analytics aims to make complex process
data more accessible and actionable for analysts by combining the strengths
of PM with principles from visual analytics (VA). This approach goes beyond
static diagrams by integrating dynamic, user-driven visual tools that support
exploration, comparison, and interpretation of process behavior. In this paper, we
adopt this perspective to overcome these limitations of DFG-based analysis. We
argue that they can be addressed by complementing the DFGs with a timeline-
based visualization technique [17,11] that uses hierarchical clustering [11] and
sequence alignment [6]. Figure 1 illustrates how, for the event log in (a), the
sequential patterns representation in (b) is enhanced in (c) by using alignment
by activities ‘c’ and ‘g’. First, we provide an overview of the related work. Then,
we describe the four scenarios analyzed, and we finally present the conclusions.

2 Related Work

Process mining and visual analytics, particularly the literature on VA of event
sequences, differ in the terminology used for core concepts in the analysis of
sequential event data. In PM, activity refers to a categorical action within a
process, and is analogous to the event type in VA. A single event in PM, an
instance of an activity with a timestamp and case ID, corresponds to an event
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occurrence (or event) in VA. Traces or cases are sequences of events associated
with a single process instance in PM, being referred to as individual sequences
in VA. Variants or unique traces, meaning distinct observed sequences across
different cases, are unique sequences in VA. Finally, a process model in PM, which
provides a high-level model of the process flow, serves a similar role to sequential
patterns in VA, which provides an abstraction of frequent or representative event
sequences across a dataset.

Visualization of event sequences. In PM, variant diagrams [14] are com-
monly used to visualize process variants, which represent unique sequences of
activities. These diagrams arrange the variants vertically, and aligned to the left
for consistency. Each activity within a variant is encoded using rectangles or hor-
izontal chevrons, using distinct colors to enhance differentiation and readability.
One limitation is that processes tend to have hundreds of variants, complicating
the extraction of relevant insights. To address this, [2] proposed the use of sam-
pling to select a representative set of variants, removing visual noise by coloring
only the top 5 activities, and by ordering the traces by similarity to facilitate
their reading. [13] also focus on visualizing variants using variant diagrams. How-
ever, in this case, they focus on event logs with partially ordered event data and
heterogeneous temporal information per event (time intervals and time points).

In VA, existing techniques for visualizing event sequences primarily focus on
encoding common pathways or sequential patterns [7,15]. In this context, van
der Linden et al. [15] identified as still open challenges in the comparison of event
sequences the definition of similarity metrics, the granularity of comparisons, the
representation of temporal attributes, the integration of sequence attributes, and
scalability. Recent surveys [7,18] provide an overview of these techniques, being
particularly relevant timeline-based visualizations [10,5,16].

Table 1. Road traffic fines dataset. Acronyms representing activities and descriptions.

ID Description ID Description
AP Add Penalty PAY Payment
AJ Appeal to Judge RRA Receive Result Appeal
CF Create Fine from prefecture
IDA Insert Date Appeal to prefecture SAP Send Appeal to Prefecture
IFN Insert Fine Notification SF Send Fine
NRA Notify Result Appeal to offender SFC Send For Credit collection

3 Selected scenarios

We have selected four scenarios where event sequence visualizations can com-
plement DFGs to address some of their limitations in representing general
structure, parallelism, repetitions, and precision. We use the Road Traffic Fines
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Fig. 2. Timeline-based event sequence visualization (left) vs. DFG (right) for the Road
Traffic Fines dataset [9], highlighting the less frequent traces (dashed line).

dataset [9], which spans 13 years of road traffic fine management by a police
force in Italy, comprising 150,370 cases and 561,480 events (Table 1).

Screenshots for the timeline-based event sequence visualizations have been
obtained using Sequen-C [11], a visual analytics system for the analysis of event
sequences that uses hierarchical agglomerative clustering to identify clusters of
similar sequences. This strategy facilitates the simplification of complex datasets
and enables the breakdown of the complexity of the processes under study [3].
DFGs have been created in Python, using Dash, Cytoscape and distinctipy.

General structure (L1). Event sequence visualizations and DFGs use a dif-
ferent visual encoding to reveal the general structure and dominant patterns in
a dataset. Figure 2 (left) shows the complete road fine dataset, with height en-
coding frequency. This visualization allows for an easy identification of recurrent
structures and frequent and infrequent sequences. The vertically aligned bars
and stacked events reveal the key activities (CF, SF, IFN, AP, SFC). The most
commonly repeated patterns are exposed (e.g., CF → SF; CF → SF → IFN
→ AP → SFC; CF → SF → IFN → AP → PAY; and CF → PAY), also re-
vealing the proportion of infrequent sequences and their complexity. This allows
the quick identification of those sequences that deviate the most from the most
common patterns. In contrast, the corresponding DFG representation Figure 2
(right), despite encoding the frequency of occurrence of activities and transi-
tions, is complex to interpret. The high connectivity and visually dense network
obscure the identification of how sequences progress. While the DFG effectively
captures all possible transitions between events, its capacity to reveal high-level
structure is limited.
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Fig. 3. Timeline-based event sequence visualization (top) vs. DFG (bottom) for 516
traces in the road traffic fines dataset [9]. The activity of interest AP is highlighted
using red arrows and circle, and the alignment events using black arrows.

Parallelism (L2) Event sequence visualizations and DFGs represent differ-
ently concurrent activities, i.e., activities that can be run in parallel and may
appear in varying orders across traces in the event log. Figure 3 shows an ex-
ample where the activity AP occurs repeatedly over time (red arrows), and is
not always preceded by the same activity. AP follows activities as distinct as
IFN, IDA, SAT, RRA, and NRA. This suggests that AP does not exhibit a
strong dependency on specific prior events and can be interleaved with a wide
range of other activities. This representation is particularly effective in revealing
this positional variability.In this case, AP might have been triggered after a pre-
established period and after checking that a fine has not yet been paid in full.
To obtain the visualization in Figure 3, event alignment (black arrows) has been
used to align and group the activities of interest that have been identified as
precursors of AP, namely, IFN, IDA, SAT, RRA and NRA. Alignment is often
used in event sequence visualization as a means to explore temporal order. To
achieve alignment, additional spaces are inserted between the events of interest
selected as alignment events. In this case, we chose IFN, IDA, SAT, RRA and
NRA to explore their relationship with AP. While alignment maintains the order
of activities, it introduces visual gaps that do not represent real time. These gaps
support alignment and visual comparison, but they may reduce the visibility of
the broader process context by spacing activities apart.

The corresponding DFG representation in Figure 3(bottom) abstracts away
temporal ordering in favor of aggregated transition relations. While the AP node
has incoming edges from nearly all other activities, except for CF, SF, and SFC,
indicating high in-degree, the graph structure cannot communicate when and
how frequently AP occurs in different contexts. As a result, the DFG lacks the
expressiveness needed to assess the degree to which AP is executed concurrently
with other activities in the process.
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Fig. 4. Timeline-based event sequence visualization (top) vs. DFG (bottom) for 170
traces in the road traffic fines dataset [9].

Precision (L3). Event sequence visualizations visualize behaviours that oc-
curred in the event log, whereas DFGs allow for behaviors that may have never
occurred in the event log (see Section 1). This forces the analyst to use strategies
to confirm whether a certain behavior in the DFG has occurred or not. Next, we
show how event sequence visualizations can support the analyst in this task.
Cycles vs order. The area highlighted (red rectangle) in the DFG in Figure 4
illustrates a typical example of a cycle between two activities: PAY and AP.
However, simply looking at the DFG does not reveal whether this is a true
cycle, i.e., whether traces exist that include multiple alternating occurrences of
penalties and payments, such as ... → AP → PAY → AP → PAY. In contrast,
the event sequence visualization provides a clearer picture of the actual behavior
recorded in the event log and makes it clear that such a cycle does occur. The
highlighted area (red rectangle) in the event sequence visualization shows that
multiple payments (PAY) can occur within the same case, while penalties (AP)
are applied only once.
Focus on a single activity. When analyzing process data, a typical scenario
involves characterizing the sequence of activities that lead to the execution of a
particular activity. For instance, in our case, we might be interested in identi-
fying which activity sequences typically precede or avoid the activity Send for
Credit Collection (SFC), which indicates that a case has been forwarded to a
credit collection agency due to non-payment of a fine. This kind of analysis is
difficult to perform directly using a Directly-Follows Graph (DFG), which aggre-
gates control-flow relations without preserving trace-level detail. For instance,
the DFG in Figure 2 shows that SFC is most commonly preceded by AP and
PAY, and occasionally by NRA, RRA, AJ, or SAP. However, due to the lim-
ited support of DFGs for path disambiguation, it is not possible to reconstruct
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the full context or differentiate between alternative sequences that converge on
SFC. In contrast, the event sequence visualization in the same figure keeps the
temporal ordering of individual traces. This allows analysts to visually identify
common and exceptional paths that lead to SFC. For example, it becomes ap-
parent that SFC frequently follows the path CF → SF → IFN → AP → SFC,
and less commonly, CF → SF → IFN → AP → PAY → SFC. It also becomes
clear that certain paths—such as CF → PAY (without SF) or CF → SF → PAY
(without IFN)—systematically avoid SFC. Such insights are possible because
the event sequence visualization preserves trace-level granularity and visually
encodes sequence variation.

Repetitions (L4). One key distinction between event sequence visualizations
and DFGs lies in their ability to represent consecutive repetitions of events.
In the event sequence visualization of Figure 4(top), the area highlighted (blue
rectangle) shows clearly that the event PAY occurs repeatedly and in imme-
diate succession. The visual encoding of sequential order along the horizontal
axis facilitates the identification of repetitions but also their exact frequency
and position within the temporal sequence. In contrast, the DFG representation
(bottom) abstracts away the temporal order. The presence of a self-loop on the
node PAY (blue arrow) indicates that PAY can transition to itself, but this fails
to convey how frequently or when this transition occurs within the cases con-
taining this activity. While the graph effectively summarizes possible transitions,
it omits critical information about the temporal ordering of events.

Combining DFGs and timeline-based visualizations. Both offer comple-
mentary insights for process analysis. DFGs provide a high-level overview of
all possible transitions, highlighting activities with high connectivity, identify-
ing self-transitions and potential repetitions. Timeline-based visualizations re-
veal dominant patterns, highlighting frequency of events, and exposing the main
paths leading to or avoiding key activities. Together, these views enable a more
nuanced and complete understanding of processes.

4 Conclusions

This work contributes to the emerging field of visual process analytics. We ex-
amined four limitations of DFGs, commonly used in PM, and illustrated them
through some examples in the Road Traffic Fines Management dataset. We have
shown how a timeline-based visualization, commonly used in VA for event se-
quence analysis, offers more interpretable insights by preserving trace-level detail
and highlighting patterns that are otherwise obscured by the aggregated struc-
ture of DFGs. However, these visualizations can be difficult to interpret with
increasing number of sequences and events, often suffering from visual clutter.

Our paper highlights how this type of visualizations can address DFGs limi-
tations, but they are not a replacement. DFGs can reveal infrequent yet impor-
tant behaviors that may be overlooked in timeline-based visualizations due to
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frequency-based scaling. Both approaches are complementary. As future work,
we aim to develop interactive mechanisms to support their seamless coordina-
tion.
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